

Performance and Cost Targets for sCO₂ Heat Exchangers Panel Introduction

David Thimsen

Principal Technical Leader

NETL-EPRI Workshop on Heat

Exchangers for Supercritical CO₂ Power

Cycles

October 15, 2015

sCO₂ Brayton Cycle Heat Exchanger Classes

Primary Heater

Cognate to Rankine cycle steam generator

- Low-Temperature and High Temperature Recuperators
 - Cognate to Rankine cycle feedwater heaters

- Compressor Inlet Cooler
 - Cognate to Rankine cycle condenser

Similar components for cascading and direct-fired Brayton power cycle configurations

Generally Good News about Turbomachinery

- sCO₂ power turbine is approximately 1/5 the overall size (length) of a comparable output steam turbine.
- sCO₂ compressor(s) are approximately 3 times the size of feedwater pumps

- 645 MWe Power Turbine
- 253 MW Compressor Turbine
 (comparable feedwater pump turbine drive is ~45 MW)

Not So Much Good News for Heat Exchangers

Recuperators Dominate the Footprint

Compressor Inlet Cooler

- Similar in design to compressor inter-coolers
 - Coolant is the on shell side compared with tube-side coolant in Rankine cycles
- Direct-fired cycles include condensation/water removal.
 Acidic condensate due to H₂CO₃, H₂SO₄, HNO₃, HCL.

Primary Heat Exchangers

- sCO₂ primary heater heat duty is comparable to Rankine cycle primary heater (steam generator) duty for the same power output.
- Tube-side sCO₂ flow is 5-10 times Rankine cycle feedwater flow with correspondingly lower enthalpy rise.
- Primary heater sCO₂ pressure drop is more costly (~5x in compression/pumping power) than water-side pressure drop in steam generators.

The challenge is to achieve uniform flow/heat absorption for much higher flows and lower allowed pressure drops than steam generators.

Recuperators

- High heat duty makes for large area heat exchangers.
 - Area = \$, £, ¥, €
- High cycle efficiency requires high U₀A.
 - Some (limited) opportunities to increase heat transfer coefficient (U₀)

 Compact heat exchangers reduce weight/U₀A (reducing cost) but are generally associated with higher manufacturing costs.

- High temperature recuperator may require exotic materials (\$, £, ¥, €) tending to favor compact heat exchangers (less metal).
- Scaling existing HX designs will be challenging.
 Parallel recuperators just transfer the challenge to the piping designer.

sCO₂ Brayton Cycle HX Design and Maintenance

- New (to the power industry) compact heat exchangers:
 - What are failure mechanisms?
 - What is mean time to failure/repair?
 - How are they repaired?
- How can use of exotic metals (\$, £, ¥, €) be minimized at acceptable reliability and overall cost?
- What are economic trade-offs between HX performance (effectiveness) and resulting cycle performance (efficiency) and capital cost (HX U₀A)?

In Summary

- HX costs are likely to dominate sCO₂ Brayton cycle power heater/power block costs.
- Recuperators will be the primary HX cost adder compared to steam-Rankine power plants.
 - High temperature recuperators are likely to be the greatest design challenge.
 - Least cost approach to recuperation is yet to be demonstrated.
- Primary heater designs confront hydraulic/heat transfer challenges not present in steam generators
- Compressor inlet cooler design will be informed by compressor intercooler design.
 - Compressor inlet coolers for direct-fired sCO₂ Brayton power cycles will confront acid corrosion challenges.

The Panelists

Tim Held Echogen

David Freed NET Power

Jeff Moore
 Southwest Research Institute

Mike McDowell
 Gas Technology Institute

- Brief explanatory questions accepted after each presentation
- General questions concerning HX requirements accepted following all presentations

Together...Shaping the Future of Electricity

David Thimsen dthimsen@epri.com (651) 766-8826

